基于边光滑有限元法的剪切变形板几何非线性分析

摘 要:为改善在计算板的几何非线性问题时有限元法系统过硬的数值缺陷,提高计算精度,在考虑剪切变形的von Karman假设下,基于全拉格朗日描述方法,将边光滑有限元法应用于板的几何非线性分析.计算公式基于1阶剪切变形理论,并采用离散剪切间隙有效地消除剪切自锁.在三角形单元的基础上进一步形成边界光滑域,在每个光滑域内对应变进行光滑操作并进行数值积分, 并通过光滑Galerkin弱形式得到离散方程.数值算例的结果表明:基于边的光滑操作在一定程度上软化数值模型,改善传统有限元系统过刚的数值缺陷,提高数值解的精度.

关键词:边光滑有限元法; 非线性; 有限元法; 应变光滑

中图分类号:O241.82;TB115.7 文献标志码:A

Geometric nonlinear analysis on shear deformation plates using edge-based smoothed finite element method

CUI Xiangyang, LI Guangyao

(State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,

Hunan University, Changsha 410082, China)

Abstract: To overcome the over-stiff phenomenon in finite element method system and improve the calculation accuracy, the edge-based smoothed finite element method is applied to geometric nonlinear analysis on plates based on von Karman assumption which is in considering shear deformation and Total Lagrange description method. The formulations are based on the first order shear deformation theory and the shear locking is eliminated by using discrete shear gap. The edge-based smoothing domains are further formed based on the triangular elements, the strain smoothing operation and numerical integration are implemented and performed in each smoothing domain. And the discretized system equations are obtained using the smoothed Galerkin weak form. The results of numerical examples demonstrate that the edge-based smoothing operation can provide much needed softening effect to the numerical model to reduce the overly-stiff behavior of the finite element system and hence improve significantly the accuracy of the solution.

Key words: edge-based smoothed finite element method; nonlinearity; finite element method; strain smoothing

0 引 言

最近几十年来,有限元法作为重要的数值计算方法被广泛应用于工程和自然科学问题中.板单元以其广泛的应用价值受到研究者的关注.尽管已提出和发展大量的四边形板单元[1-3],但三节点三角形板单元以其前处理的方便性以及对复杂几何形状的适用性,深受研究者的喜爱.然而,三角形板单元的发展受计算精度较低和剪切自锁的制约.为消除剪切自锁,PUGH等[4]提出基于缩减积分的三角形板弯曲单元;BELYTSCHKO等[5]采用一点高斯积分计算剪切应变能.基于缩减积分的三角形板单元一般精度较低,并出现零能模式,通常难以通过薄板弯曲分片试验,STRICKLIN等[6]和DHATT[7-8]提出一种离散Kirchoff三角形板单元,即DKT单元.DKT是一种比较精确的三角形单元,但其计算效率较低且只对薄板有效. BATOZ等[9]对基于角点位移三节点平板弯曲单元进行总结,指出此类单元只有极少数可用于计算;CHEN等[10]基于Timoshenko 梁理论提出DKTM和RDTKM这2种精细三角形薄厚板单元;KIM等[11-12]基于假设应变法提出一种三节点三角形单元用于板壳问题的线性和几何非线性分析;BLETZINGER等[13]提出一种离散剪切间隙方法用于消除剪切自锁,并构造相应的三角形单元用于分析薄厚板问题.

影响三角形单元精度的另一个问题是基于最小位能原理的有限元法,其近似的位移场在总体上偏小,即计算模型偏于刚硬.为解决此问题,LIU[14]提出一种广义梯度光滑方法,并通过光滑迦辽金弱形式构造一类新型数值计算方法,突破最小位能原理的限制,有效拓展问题求解空间.基于该方法,一种基于边构造光滑域的边光滑有限元法被提出并用于计算平面问题[15],展示较好的计算性能.

本文基于边光滑有限元法提出一种新型三角形板单元用于计算板的几何非线性问题.该单元基于1阶剪切变形理论,利用离散剪切间隙方法消除剪切自锁:先将问题域离散为三角形单元,并基于三角形的边进一步构造光滑域,用于构造系统刚度矩阵和积分计算;通过在光滑域内运用应变光滑技术,有效地调整系统刚度,改善有限元法系统过硬的数值缺陷,提高计算精度.

1 板的基本公式

考虑到模型和边界条件的对称性,只取方板的1/4模型进行计算.方板模型及网格见图3.计算结果由4×4的网格(共25个节点)得到.图4给出由本文方法得出的力位移曲线与解析解的比较结果,可知本文方法在极少的网格(仅25个节点)下便能得出比较精确的结果.表1给出在不同载荷下的本文解和解析解的比较,可知二者非常相近,具有较高的精度.图 4 受均布载荷的固支方板中心点的力-位移曲线

4.2 圆板的非线性分析

用受均布载荷的固支圆板进一步验证本文所提方法的有效性.图5为圆板的几何模型和网格模型.

圆板的几何参数为:半径R=1 m,厚度t=0.02 m.材料参数为:杨氏模量E=3.0×107 N/m2;泊松比矸直鹑 0.3和0.1,用于检验本文方法对不同材料的敏感性.由于对称性,仅取圆板的1/4用于分析计算.本文采用61个节点的网格模型计算.式(62)的解析解[18]用来检验本文所提方法的精确性.

pR4Et4=163(1- 2)•

w0t+1360(1+ )(173-73 )w0t3(62)

式中:p为均布载荷值;w0为圆板中心点的挠度.

图6为取不同泊松比时的均布载荷p和规则化挠度w-=w/t的变化曲线.可知,对于不同的泊松比,本文方法得到的曲线均与解析解曲线很好地吻合,说明本文方法的精确性和有效性.表2给出不同载荷下的圆板中心点挠度的非线性解,通过与解析解比较可知,本文方法计算的结果具有较高的精度.

5 结 论

基于边光滑有限元法,构造一种三角形板单元分析几何非线性问题,采用光滑迦辽金弱形式离散系统方程,并在基于边形成的光滑域中进行积分计算.在考虑剪切变形的von Karman假设下,基于Total Lagrange描述方法给出刚度矩阵的边光滑有限元列式.通过受均布载荷的固支方板和固支圆板的数值结果与解析结果比较表明:本文方法在网格数量较少的情况下可获得较高的精度,为采用三节点三角形板单元获得高精度的非线性结果提供解决方案.

参考文献:

[1] BELYTSCHKO T, TSAY C S, LIU W K. A stabilization matrix for the bilinear Mindlin plate element[J]. Comput Methods Appl Mech & Eng, 1981, 29(3): 313-327.

[2] BATOZ J L, TAHAR M B. Evaluation of a new quadrilateral thin plate bending element[J]. Int J Numer Methods Eng, 1982, 18(11): 1655-1677.

[3] BATHE K J, DVORKIN E N. A formulation of general shell elements-the use of mixed interpolation of tensorial components[J]. Int J Numer Methods Eng, 1986, 22(3): 697-722.

[4] PUGH E D, HINTON E, ZIENKIEWICZ O C. A study of triangular plate bending element with reduced integration[J]. Int J Numer Methods Eng, 1978, 14(12): 1059-1078.

[5] BELYTSCHKO T, STOLARSKI H, CARPENTER N. A C0 triangular plate element with one-point quadrature[J]. Int J Numer Methods Eng, 1984, 20(5): 787-802.

[6] STRICKLIN J, HAISLER W, TISDALE P, et al. A rapidly converging triangular plate bending element[J]. AIAA J, 1969, 7(1): 180-181.

[7] DHATT G. Numerical analysis of thin shells by curved triangular elements based on discrete Kirchhoff hypothesis[C] // Proc ASCE Symp Applications FEM Civil Eng, Vanderbilt Univ, Nashville, 1969: 255-278.

[8] DHATT G S. An efficient triangular shell element[J]. AIAA J, 1970, 8(11): 2100-2102.

[9] BATOZ J L, BATHE K J, HO L W. A study of three-node triangular plate bending elements[J]. Int J Numer Methods Eng, 1980, 16(12): 1771-1812.

[10] CHEN Wanji, CHEUNG Y K. Refined 9-DOF triangular Mindlin plate elements[J]. Int J Numer Methods Eng, 2001, 51(11): 1259-1281.

[11] KIM Jonghoon, KIM Yonghyup. Three-node macro triangular shell element based on the assumed natural strains[J]. Comput Mech, 2002, 29(6): 441-458.

[12] KIM Jonghoon, KIM Yonghyup. A three-node C0 ANS element for geometrically non-linear structural analysis[J]. Comput Methods Appl Mech & Eng, 2002, 191(37-38): 4035-4059.

[13] BLETZINGER K U, BISCHOFF M, RAMM E. A unified approach for shear-locking-free triangular and rectangular shell finite elements[J]. Computers & Structures, 2000, 75(3): 321-334.

[14] LIU G R. A generalized gradient smoothing technique and smoothed bilinear form for Galerkin formulation of a wide class of computational methods[J]. Int J Comput Methods, 2008, 5(2): 199-236.

[15] LIU G R, NGUYEN T T, LAM K.Y. An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analysis of solids[J]. J Sound & Vibration, 2009, 320(4-5): 1110-1130.

[16] FUNG Y C. Foundations of solid mechanics[M]. London: Prentice Hall, 1965.

[17] CRISFIELD M A. Non-linear finite element analysis of solids and structures: vol 1[M]. Chichester: John Wiley & Sons, 1997.

[18] CHIA C Y. Nonlinear analysis of plate[M]. New York: McGraw-Hill, 1980.

(编辑 于 杰)

推荐访问:剪切 光滑 几何 变形 有限元